วันพุธที่ 18 กุมภาพันธ์ พ.ศ. 2558

โดเมนและเรนจ์

        พิจารณาเฉพาะเซตของสมาชิกตัวหน้า และเซตของสมาชิกตัวหลังในคู่อันดับของความสัมพันธ์ใด ๆ จะได้โดเมน (domain) และเรนจ์ (range) ของความสัมพันธ์นั้นตามลำดับ
เช่น r1 = {(1,2),(2,3),(3,4),(4,5)}
     r2={(x,y)  I x I | y = x}
    เซตของสมาชิกตัวหน้าในคู่อันดับของ r1 = {1,2,3,4} เรียกเซตนี้ว่า โดเมนของ r1
    เซตของสมาชิกตัวหลังในคู่อันดับของ r1 = {2,3,4,5} เรียกเซตนี้ว่า เรนจ์ของ r1
    ส่วนใน r2 จะเห็นว่าโดเมนของ  r2 เท่ากับเรนจ์ของ  r2 คือเซตของจำนวนเต็ม อ่านเพิ่มเติม

ฟังก์ชันขั้นบันได

      ฟังก์ชันขั้นบันได คือฟังก์ชันบนจำนวนจริงซึ่งเกิดจากการรวมกันระหว่างฟังก์ชันคงตัวจากโดเมนที่แบ่งออกเป็นช่วงหลายช่วง กราฟของฟังก์ชันจะมีลักษณะเป็นส่วนของเส้นตรงหรือรังสีในแนวราบเป็นท่อน ๆ ตามช่วง ในระดับความสูงต่างกัน 

ความสัมพันธ์และฟังก์ชัน

      คู่อันดับ (Order Pairเป็นการจับคู่สิ่งของโดยถือลำดับเป็นสำคัญ เช่น คู่อันดับ ab จะเขียนแทนด้วย (abเรียก a ว่าเป็นสมาชิกตัวหน้า และเรียก b ว่าเป็นสมาชิกตัวหลัง
(การเท่ากับของคู่อันดับ) (ab) = (c, dก็ต่อเมื่อ a = cและ b = d

ผลคูณคาร์ทีเชียน (Cartesian Product) ผลคูณคาร์ทีเซียนของเซต A และเซต B คือ เซตของคู่อันดับ (abทั้งหมด โดยที่ a เป็นสมาชิกของเซต A และ b เป็นสมาชิกของเซต Bอ่านเพิ่มเติม

ฟังก์ชันค่าสัมบูรณ์

      ฟังก์ชันค่าสมบูรณ์ถูกกำหนดโดยกฎซึ่งแบ่งออกเป็นสองกรณีค่าฟังก์ชันสมบูรณ์ | | จะกำหนดโดย
ค่า absolute ของ ให้ระยะห่างระหว่าง และ เป็นบวกหรือศูนย์เสมอตัวอย่างเช่น
|3| = 3, |-3| = 3, |0|=0. | 3 | = 3, | -3 | = 3 | 0 | = 0
โดเมนของฟังก์ชันค่าสมบูรณ์คือ ทั้งเส้นของจริงในขณะที่ช่วงคือช่วง [0, ∞)
ฟังก์ชันค่าสมบูรณ์สามารถอธิบายกฎ  อ่านเพิ่มเติม

กราฟของฟังก์ชันกำลังสอง

 กราฟของฟังก์ชันกำลังสอง ที่กำหนดด้วยสมการ    y  =  ax^2   เมื่อ  a ไม่เท่ากับ 0
        กราฟของฟังก์ชันกำลัง
สอง   มีชื่อเรียกว่า  พาราโบลา ซึ่งลักษณะของกราฟของฟังก์ชันขึ้นอยู่กับค่าของ  a , b  และ  c   และเมื่อ  a  เป็นบวกหรือลบ  จะทำให้ได้กราฟเป็นเส้นโค้งหงายหรือคว่ำ  และกราฟของฟังก์ชันกำลังสองที่กำหนดด้วยสมการ    y  =  ax^2   เมื่อ  a ไม่เท่ากับ 0       เมื่อ  a  > 0   และชนิดคว่ำ   เมื่อ   a < 0 อ่านเพิ่มเติม

ฟังก์ชันเชิงเส้น

 ฟังก์ชั่นที่อยู่ในรูป f(x) = ax+b  เมื่อ a และ b เป็นจำนวนจริง
เช่น f(x) = 2x+1
f
(x) = -3x
               f(x) = x-5 เป็นต้น 
กราฟของฟังก์ชั่นเหล่านี้เป็นเส้นตรงที่ไม่ขนานกับแกน ฟังก์ชั่นเชิงเส้น f(x) = ax+b เมื่อ a=0 จะได้ฟังก์ชั่นอยู่ในรูป f(x) = b ฟังก์ชั่นนี้มีชื่อเรียกเฉพาะว่า ‘‘ ฟังก์ชั่นคงตัว ’’ (Constant function) กราฟของฟังก์ชั่นคงตัวจะเป็นเส้นตรงที่ขนานกับแกน x เช่นf(x) = 4 , f(x) = -2 เป็นต้น อ่านเพิ่มเติม
ฟังก์ชัน
      ฟังก์ชันเป็นบทเรียนที่ต่อจากเรื่องความสัมพันธ์ ในบทเรียนนี้จะได้รู้จักว่าฟังก์ชันเป็นอย่างไร มีเงื่อนไขอย่างไร การแทนฟังก์ชัน ฟังก์ชันจาก ไป ฟังก์ชันที่ควรรู้จัก พร้อมทั้งนำไปประยุกต์ใช้ในการแก้สมการและอสมการ การแก้โจทย์ปัญหาฟังก์ชัน ฟังก์ชันคอมโพสิท ฟังก์ชันอินเวอร์ส และพีชคณิตของฟังก์ชัน อ่านเพิ่มเติม